Author Affiliations
Abstract
1 Shenzhen Key Laboratory of Laser Engineering, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
2 Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Shenzhen Technology University, Shenzhen, China
3 Han’s Laser Technology Industry Group Co., Ltd., Shenzhen, China
High-power femtosecond mid-infrared (MIR) lasers are of vast importance to both fundamental research and applications. We report a high-power femtosecond master oscillator power amplifier laser system consisting of a single-mode Er:ZBLAN fiber mode-locked oscillator and pre-amplifier followed by a large-mode-area Er:ZBLAN fiber main amplifier. The main amplifier is actively cooled and bidirectionally pumped at 976 nm, generating a slope efficiency of 26.9%. Pulses of 8.12 W, 148 fs at 2.8 μm with a repetition rate of 69.65 MHz are achieved. To the best of our knowledge, this is the highest average power ever achieved from a femtosecond MIR laser source. Such a compact ultrafast laser system is promising for a wide range of applications, such as medical surgery and material processing.
femtosecond fiber laser fluoride fiber amplifier master oscillator power amplifier mid-infrared 
High Power Laser Science and Engineering
2023, 11(4): 04000e53
Author Affiliations
Abstract
1 Shenzhen Key Laboratory of Laser Engineering, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Universityhttps://ror.org/01vy4gh70, Shenzhen 518060, China
2 Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Shenzhen Technology University, Shenzhen 518118, China
3 Han’s Laser Technology Industry Group Co., Ltd., Shenzhen 518057, China
4 e-mail: scruan@sztu.edu.cn
High-power tunable femtosecond mid-infrared (MIR) pulses are of great interest for many scientific and industrial applications. Here we demonstrate a compact fluoride-fiber-based system that generates single solitons tunable from 3 to 3.8 μm. The system is composed of an Er:ZBLAN fiber oscillator and amplifier followed by a fusion-spliced Dy:ZBLAN fiber amplifier. The Er:ZBLAN fiber amplifier acts as a power booster as well as a frequency shifter to generate Raman solitons up to 3 μm. The Dy:ZBLAN fiber amplifier transfers the energy from the residual 2.8 μm radiation into the Raman solitons using an in-band pumping scheme, and further extends the wavelength up to 3.8 μm. Common residual pump radiation and secondary solitons accompanying the soliton self-frequency shift (SSFS) are recycled to amplify Raman solitons, consequently displaying a higher output power and pulse energy, a wider shifting range, and an excellent spectral purity. Stable 252 fs pulses at 3.8 μm with a record average power of 1.6 W and a pulse energy of 23 nJ are generated. This work provides an effective way to develop high-power widely tunable ultrafast single-soliton MIR laser sources, and this method can facilitate the design of other SSFS-based laser systems for single-soliton generation.
Photonics Research
2022, 10(9): 2140
樊浩泽 1,2梁金辉 1郑树锴 1蒋瑜 1[ ... ]阮双琛 1,2,**
作者单位
摘要
1 深圳大学物理与光电工程学院深圳市激光工程重点实验室,广东 深圳 518060
2 深圳技术大学先进光学精密制造技术广东普通高校重点实验室,广东 深圳 518118
3 大族激光科技股份有限公司,广东 深圳 518000

2.8 μm波段中红外光纤激光器在激光医疗领域具有重要的应用,受到广泛关注。研究并实现了2.8 μm同步泵浦锁模脉冲光纤激光器。自主研制了大功率单模976 nm皮秒脉冲激光器并以此作为泵浦源,以掺铒氟化物光纤环形腔作为谐振器,通过纤芯同步泵浦的方式,在交叉相位调制作用下实现了2.8 μm同步泵浦锁模脉冲激光器的制备。锁模脉冲的中心波长为2784.7 nm,重复频率为6.534 MHz,脉冲宽度接近光电探测器极限。所提方案不需要在谐振器内插入任何中红外主动或被动调制器,具有系统稳定性好和易于实现全光纤化等优势。

激光器 中红外激光 同步泵浦锁模 交叉相位调制 
中国激光
2022, 49(1): 0101020
作者单位
摘要
1 深圳大学物理与光电工程学院深圳市激光工程重点实验室,广东 深圳 518060
2 国防科技大学前沿交叉学科学院,湖南 长沙 410073
3 深圳技术大学,广东 深圳 518118

采用飞秒激光逐线直写法,在氟化物光纤中制备出了窄带宽、高反射率的中红外光纤光栅,其中心波长为2964.34 nm,3 dB带宽为1.24 nm,反射率高达99.27%。该工作有利于构建“全光纤化”中红外光纤激光器,对推动国内中红外光纤激光器核心器件的全自主化具有重要意义。

激光技术 光纤布拉格光栅 光纤激光器 中红外激光器 氟化物光纤 
中国激光
2022, 49(1): 0101014
Author Affiliations
Abstract
1 Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
2 College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
3 State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
4 Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO 17 1BJ, UK
5 Han’s Laser Technology Industry Group Co., Ltd., Shenzhen 518057, China
We report on a mid-infrared fiber laser that uses a single-walled carbon nanotube saturable absorber mirror to realize the mode-locking operation. The laser generates 3.5 µm ultra-short pulses from an erbium-doped fluoride fiber by utilizing a dual-wavelength pumping scheme. Stable mode-locking is achieved at the 3.5 µm band with a repetition rate of 25.2 MHz. The maximum average power acquired from the laser in the mode-locking regime is 25 mW. The experimental results indicate that the carbon nanotube is an effective saturable absorber for mode-locking in the mid-infrared spectral region.
mid-infrared laser fluoride fiber laser mode-locked laser saturable absorber 
Chinese Optics Letters
2022, 20(1): 011404
Author Affiliations
Abstract
Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
As one of the greatest inventions in the 20th century, ultrafast lasers have offered new opportunities in the areas of basic scientific research and industrial manufacturing. Optical modulators are of great importance in ultrafast lasers, which directly affect the output laser performances. Over the past decades, significant efforts have been made in the development of compact, controllable, repeatable, as well as integratable optical modulators (i.e., saturable absorbers). In this paper, we review the fundamentals of the most widely studied saturable absorbers, including semiconductor saturable absorber mirrors and low-dimensional nanomaterials. Then, different fabrication technologies for saturable absorbers and their ultrafast laser applications in a wide wavelength range are illustrated. Furthermore, challenges and perspectives for the future development of saturable absorbers are discussed and presented. The development of ultrafast lasers together with the continuous exploration of reliable saturable absorbers will open up new directions for the mass production of the next-generation optoelectronic devices.
SESAMs low-dimensional materials nonlinear optical properties optical modulators ultrafast lasers 
Chinese Optics Letters
2021, 19(8): 081405
郭春雨 1董繁龙 1,2沈鹏生 1李殿甲 1,2[ ... ]阮双琛 1,2,*
作者单位
摘要
1 深圳大学物理与光电工程学院,深圳市激光工程重点实验室, 广东 深圳 518061
2 深圳技术大学先进光学精密制造技术广东普通高校重点实验室, 广东 深圳 518118
中国激光
2021, 48(14): 1416001
Author Affiliations
Abstract
1 Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, Shenzhen 518060, China
2 Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China
3 Key Laboratory of ATR National Defense Science and Technology, College of Information Engineering, Shenzhen University, Shenzhen 518060, China
We demonstrate, for the first time, to the best of our knowledge, an all-fiber figure-of-9 double-clad Tm-doped fiber laser operating in the dissipative soliton resonance (DSR) regime. Stable mode-locked rectangular pulses are obtained by using the nonlinear amplifying loop mirror (NALM) technique. A long spool of high-nonlinearity fiber (HNLF) and a segment of SMF-28 fiber are used to enhance the nonlinearity of the NALM loop and to obtain a large all-anomalous regime. Output power and pulse energy are further boosted by using a three-stage master oscillator power amplifier (MOPA) system. At the maximum pump power, average output power of up to 104.3 W with record pulse energy of 0.33 mJ is achieved with a 2 μm DSR-based MOPA system.
Photonics Research
2019, 7(5): 05000513
Author Affiliations
Abstract
1 Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
2 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
3 College of Physics and Energy, Shenzhen University, Shenzhen 518060, China
The pulse energy in the ultrafast soliton fiber laser oscillators is usually limited by the well-known wave-breaking phenomenon owing to the absence of a desirable real saturable absorber (SA) with high power tolerance and large modulation depth. Here, we report a type of microfiber-based MoTe2 SA fabricated by the magnetron-sputtering deposition (MSD) method. High-energy wave-breaking free soliton pulses were generated with pulse duration/pulse energy/average output power of 229 fs/2.14 nJ/57 mW in the 1.5 μm regime and 1.3 ps/13.8 nJ/212 mW in the 2 μm regime, respectively. To our knowledge, the generated soliton pulses at 1.5 μm had the shortest pulse duration and the highest output power among the reported erbium-doped fiber lasers mode locked by transition metal dichalcogenides. Moreover, this was the first demonstration of a MoTe2-based SA in fiber lasers in the 2 μm regime, and the pulse energy/output power are the highest in the reported thulium-doped fiber lasers mode locked by two-dimensional materials. Our results suggest that a microfiber-based MoTe2 SA could be used as an excellent photonic device for ultrafast pulse generation, and the MSD technique opens a promising route to produce a high-performance SA with high power tolerance and large modulation depth, which are beneficial for high-energy wave-breaking free pulse generation.
Lasers, fiber Mode-locked lasers Ultrafast lasers Nonlinear optical materials 
Photonics Research
2018, 6(6): 06000535
Author Affiliations
Abstract
1 Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
2 Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China
Employing 0.3 nm diameter single-walled carbon nanotubes (SWCNTs) as saturable absorbers, we demonstrate a passively mode-locked fiber laser operating at 1950 nm. The 0.3 nm diameter SWCNTs are prepared by pyrolyzing dipropylamine in the channels of zeolite crystals MgAPO-11 (AEL). The laser pumped by a 1550 nm laser source produces 972 fs pulses with a spectral width at half-maximum of 4.2 nm and a repetition rate of 21.05 MHz, an average output power of 2.3 mW corresponding to the maximum pump power of 420 mW with a 10% output coupler.
140.3510 Lasers, fiber 140.4050 Mode-locked lasers 160.4236 Nanomaterials 
Chinese Optics Letters
2017, 15(4): 041403

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!